Visit us at www.CreataClasses.com
Contact us: Admin@CreataClasses.com

ASSIGNMENT

SOLUTION

PERMUTATION

NAME: \qquad

Email ID

\qquad

LOCATION

\qquad
$\square \mathrm{SCHOOL} \quad \square$ COLLEGE
\square COMPETITIVE EXAM \qquad

Q1) Evaluate the expression
i) ${ }^{10} \mathrm{P}_{7}$
ii) ${ }^{7} \mathrm{P}_{4}$

Answer:
i) 604800
ii) 840

Q2) In how many ways, we can arrange all the letters of each word?
i) PROVINCE
ii) CANADA

Answer:
i) 8 !
ii) $6!/ 3$!

Q3) Solve for the variable

$$
{ }^{n} P_{3}=60
$$

Answer
$\mathrm{n}=5$

Q4) How many different ways are there to place four different coloured tiles in a row? Assume the tiles are red, blue, green and yellow.

Answer:

24

Explanation:

$4 \times 3 \times 2 \times 1=24$

Q5) How many different ways are there to place three different coloured tiles chosen form a set of five different coloured tiles in a row? Assume the five tiles are red, blue, green, yellow and orange.

Answer:

60

Explanation:

${ }^{5} \mathrm{P}_{3}=60$

Q6) In a school soccer league with seven teams, in how many ways can they finish in the position's "winner", "runner-up" and "third place?"

Answer:

210

Hint:

Winner: 7; Runner up: 6; Third: 5
${ }^{7} P_{3}=210$

Q7) It is required to seat 4 Women and 5 Men in a row so that the women occupy the even places. How many such arrangements are possible?

Answer:

2880

Hint:

4 women can be arranged on 4 even places in 4 ! Ways.

Q8) There are 3 candidates for a classical, 5 for a mathematical, and 4 for natural science scholarship. In how many ways can these scholarships be awarded (one scholarship per subject)
a) 60
b) 30
c) 15
d) 20

Answer:

Classical scholarship can be awarded to any one of the 3 candidates.
Mathematical can be awarded to any one of the 5 candidates.
Natural science scholarship can be awarded to any one of the 4 candidates.
So, Number of ways of awarding three scholarships $=3 \times 5 \times 4=60$

Q9) A room has 6 doors. In how many ways can a person enter the room through one door and come out through a different

Answer:

30

Hint: A person can enter the room in 6 ways and can exit the room in 5 ways.

Q10) In how many ways can 3 prizes be distributed among 4 boys, when
i) No boy gets more than one prize?
ii) A boy may get any number of prizes?
iii) No boy gets all the prizes?

Answer:

i) 24
ii) 64
iii) 60

Explanation:

i) The prize can be taken by 4 boys; second prize can be taken by 3 boys and third prize can be taken by 2 boys.
Hence total number of ways are $4 \times 3 \times 2=24$
OR

$$
4 \mathrm{P} 3=4!/ 1!=24
$$

ii) First prize to any one of the 4 boys, Second to any one of the 4 boys, and third to any one of the 4 boys.
Hence total number of ways are 4 X 4 X $4=64$
iii) Since any one of the 4 boys may get all the prizes. So, the number of ways in which a boyl gets all the 3 prizes $=4$
So the number of ways in which a boy does not get all the prizes $=43-4=60$

