

Visit us at www.CreataClasses.com Contact us: Admin@CreataClasses.com

ASSIGNMENT SOLUTION

PERMUTATION

NAME:	 	 		
Email ID				

LOCATION_

SCHOOL

COLLEGE

COMPETITIVE EXAM _____

- Q1) Evaluate the expression
 - i) ${}^{10}P_7$
 - ii) ⁷P₄

Answer:

- i) 604800
- ii) 840

Q2) In how many ways, we can arrange all the letters of each word?

- i) **PROVINCE**
- ii) CANADA

Answer:

- i) 8!
- ii) 6!/3!

Q3) Solve for the variable

 ${}^{n}P_{3} = 60$

Answer n = 5

Q4) How many different ways are there to place four different coloured tiles in a row? Assume the tiles are red, blue, green and yellow.

Answer: 24

Explanation: $4 \times 3 \times 2 \times 1 = 24$

Q5) How many different ways are there to place three different coloured tiles chosen form a set of five different coloured tiles in a row? Assume the five tiles are red, blue, green, yellow and orange.

```
Answer: 60
```

Explanation: ${}^{5}P_{3} = 60$

ASSIGNMENT: PERMUTATION Admin@CreataClasses.com

ROUGH WORK

Q6) In a school soccer league with seven teams, in how many ways can they finish in the position's "winner", "runner-up" and "third place?"

Answer:

210

Hint:

Winner: 7; Runner up: 6; Third: 5 $^{7}P_{3} = 210$

Q7) It is required to seat 4 Women and 5 Men in a row so that the women occupy the even places. How many such arrangements are possible?

Answer:

2880

Hint:

4 women can be arranged on 4 even places in 4! Ways.

Q8) There are 3 candidates for a classical, 5 for a mathematical, and 4 for natural science scholarship. In how many ways can these scholarships be awarded (one scholarship per subject)

- a) 60
- b) 30
- c) 15
- d) 20

Answer:

Classical scholarship can be awarded to any one of the 3 candidates. Mathematical can be awarded to any one of the 5 candidates. Natural science scholarship can be awarded to any one of the 4 candidates. So, Number of ways of awarding three scholarships= $3 \times 5 \times 4 = 60$

Q9) A room has 6 doors. In how many ways can a person enter the room through one door and come out through a different

Answer:

30

Hint: A person can enter the room in 6 ways and can exit the room in 5 ways.

ROUGH WORK

	.
	ROUGH WORK
Q10) In how many ways can 3 prizes be distributed among 4 boys, when	
i) No boy gets more than one prize?	
ii) A boy may get any number of prizes?	
iii) No boy gets all the prizes?	
m) No boy gets an the prizes:	1
Answer:	
i) 24	
ii) 64	
iii) 60	i
Explanation:	
i) The prize can be taken by 4 boys; second prize can be taken by 3 boys and third prize can	
be taken by 2 boys.	
Hence total number of ways are $4 \times 3 \times 2 = 24$	
OR	1
4P3 = 4!/1! = 24	
	i
ii) First prize to any one of the 4 boys, Second to any one of the 4 boys, and third to any one	1
of the 4 boys.	i
Hence total number of ways are $4 \times 4 \times 4 = 64$	
iii) Since any one of the 4 boys may get all the prizes. So, the number of ways in which a boy	y
gets all the 3 prizes $= 4$	1

So the number of ways in which a boy does not get all the prizes = 43 - 4 = 60